PAPER PolyDODT: a macrocyclic elastomer with unusual properties

Jan. 22, 2022

Abstract: The effect of reaction conditions on the structure of poly(3,6-dioxa-1,8-octanedithiol) (polyDODT) made by Reversible Radical Recombination Polymerization (R3P) using triethylamine (TEA), H2O2 and air was investigated. 800 MHz (1 and 2D) NMR was used to investigate the polymer structures. Sensitivity analysis provided direct evidence for high purity cyclic polyDODT up to Mn  100 000 g mol−1. Comparative analysis by High Resolution Multidetector Size Exclusion Chromatography (SEC) using integrated data showed that the cycles had lower viscosity and were more compact (both for Rg and Rh) than linear samples of similar molecular weight. However, differential data revealed unusual behavior. While lower molecular weight cyclic polymers eluted later and had lower intrinsic viscosity than their linear counterparts at the same molecular weight, at higher molecular weights the polymers showed strange behavior: both the diffusion coefficient measured by Quasielastic Light Scattering (QELS) and Mark–Houwink–Sakurada plots of intrinsic viscosity for linear and cyclic polyDODT were found to converge. R3P, an aqueous based “green” method is capable of producing polymers at the 10–100 g scale in the lab, which will allow more detailed studies of this new class of biodegradable elastomers so further experimentation can be performed to elucidate the reasons for the unusual findings.